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Experimental Examinations of Electrical

Properties of Germanium Semiconductor
by Use of Hall Effect

Wen-Feng Tsai

ABSTRACT

Making use of the Hall Effect, we have studied some eletrical properties of

Germanium semiconductor, which is doped with a little impurity Arsenic, in this

experiment. The energy gap E; and the kind of the carrier in the crystal are

determined. The exponential dependence of the conductivity of the crystal on

temperature is also measured. In addition, the temperature ranges for the intrin-

sic region and for the extrinsic region are searched in this paper.

The energy bands for an insulator, metal,
and semiconductor are different. A pure semi-
conductor (such as Germanium) becomes an
insulator at about absolute zero. At a finite tem-
perature, the property of conductivity of the
semiconductor reveals with the thermal excita-
tion of conduction band. Furthermore, as an im-
purity (such as Arsenic) is doped into the semi-
conductor, the energy level figure changes. At
low temperature, the doped semiconductor will
be an extrinsic semiconducor. However, for high
temperature range, (say, T=300°K), the im-
purity carriers are almost in the condcuction
band and the semiconductor acts an intrinsic
semiconductor.

The Hall Effect is a good measurement tool
to determine the energy gap of the semiconduc-

tor and the carrier concentration of the semicon-
ductor. Theoretical studies give the relation
between the Hall voltage Vi and the carrier con-
centration n. We also have the exponential
dependence of the resistivity of the semiconduc-
tor on temperature T as a current source is
applied to the semiconductor crystal in a homo-
geneous magnetic field. We can find this relation
from the experimental data. In addition, the
energy gap of the semiconductor is calculated
by the relation between the resistance R and
temperature T. The kind of the carriers in our
sample is determined to be electrons as expect-
ed.

THEORY

I'. Semiconductor of Germanium doped with
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Arsenic
(1) semiconductor

A semiconductor is a crystalline solid in
which the conduction band lies close to the
valence band, but is not populated at low tem-
perature. In a semiconductor, both electrons and
holes are responsible for the properties of con-
ductivity. For a pure crystal semiconductor, rais-
ing an electron from the valence band to the
conduction band will leave a hole in the valence
band. Thus, the concentration p of holes (posi-
tive carriers) is equai to the concentration n of
free electrons (negative carriers). In this case, p
and n are called the intrinsic carriers. However,
for most semiconductor materials, there is a
certain amount of impurities in them. The im-
purities can either donate electrons to the con-
duction band (making an n-type crystal) or
accept electrons from the valence band to cre-
ate holes in it (making a p-type crystal). These
impurities are called extrinsic carriers. .In this
case, n¥p.
(2) Semiconductor energy band structure

Quantum-mechanically, due to the interac-
tion of the conduction electron wave of the
atoms in a crystal with the periodic ioncores of
the crystal, the distinct energy levels of the elec-
trons split into bands. The energy band for
which no wavelike electron orbitals exist are
called forbidden bands. The allowed bands in
which the electrons have higher energies and
contribute to the conductivity are called conduc-
tion bands. The other allowed bands in which the
electrons have lower energies and are unmova-
ble are called valence bands. The energy differ-
ence between the lowest point of the conduction
band (conduction band edge) and the highest
point of the valence band (valence band edge) is

called the forbidden gap energy Eg. An electron
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band scheme leading to intrinsic conductivity is
indicated in Fig. |

For semiconductor, the conduction band is
vacant at 0°K and is separated by a moderate
energy gap E¢ (for example, 0.744 ev for Germa-
nium crystal) from the filled valence band.
Hence, there is no contribution to conduction
from either bands. In this situation, the semicon-
ductor acts like an insulator. As temperature is
increased, however, many electrons are ther-
mally excited from the valence band into the
conduction band due to the small energy gap Eg.
Both the electrons in the conduction band and
the vacant orbits or holes left behind in the
valence band contribute to electrical conductiv-
ity.

(3) Semiconductor of Germanium doped with
Arsenic!”

Germanium is one of Group IV in the Peri-
odic Table. When Ge atoms are brought
together, they form a covalent bond with each
other with four atoms in each unit cell. If we
dope Ge with the impurity Arsenic (one of Group
V), we see that, in As-atom, four of its five
valence electrons are shared by four neighbor-
ing Ge-atoms, and its fifth valence electron is
almost free. Therefore, simply by Bohr's model,
this extra electron should have hydrogen-like
energy levels Eq in the forbidden band due to

- . e
the periodic potential V= —E—Zrof the Ge-atoms.
E. can be shown as

o —(— e ! ()

22 'n’

where m * is the effective mass of the free elec-

11

tron in a perturbed field. For n=1, E = 0.0l ev.
So, En is a very small quantity below zero, where
zero means that the free electron is just at the

bottom of the conduction band®. This is shown
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in Fig. 2. Hence, the effect of the embedded
As-atom in the crystal of pure Ge is to introduce
additional levels at energies between the top of
the valence band and the bottom of the conduc-
tion band.
Il. Electrical conductivity of the
semiconductor™®
(1) Fermi-Dirac distribution

In semiconductors, the thermal excitation of
electrons from the valence band into the conduc-
tion band can be calculated by using Fermi-
Dirac distribution since the electrons in the con-
duction band or the holes in the valence band,
which are all away from the edges of the allowed
bands, are quite free. The Fermi-Dirac distribu-
tion gives the probability that a free electron gas
in thermal equilibrium at temperature T has an
orbital at energy E:

|
f(E)= SEE KT 4| (2)

where Er is called the Fermi energy which is
defined as the electron energy of the topmost
filled orbital at T=0'K (at T=0K, f(E<Eg)=1).
Er is also equal to the value of the chemical
potential of a semiconductor. We see that f(E=
Er)=1/2. This means that the chemical poten-
tial of a semicondutor almost always lies in the

energy gap. Let the energy level of the top of

7, RN pgeceee

g
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donor levels
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Fig. 2 A donor level in the gap between valence
and conduction bands of a semiconductor.

the valence band be &, and the energy level of
the bottom of the conduction band be ec. Then
Eg = &c-¢y.

Since every conduction band level exceeds
& and every valence band level is less than
&v, and (e-Er)> > kT, (Er—é&v)> > kT, we
have

| _

e(E—EF)/kT+ I
(E>e) . (3)

[
_ ~a-(E-E )
and fv(E)—e——(E_EF,,kT+ e E-EJAT (E>g,)

@)

(2) Number of carriers in thermal equilibrium

fc(E) =

—(E—-E )/kT
F ’

~e

Since conduction is entirely due to elec-
trons in conduction band level or holes in
valence band levels, regardless of the concen-
tration of impurities, the number n. of electrons
per unit volume in the conduction band at tem-
perature T will be given by

+
ne(T) =S “ T4E g(E)f.(E)
- goodE ge(E)e ™ ERT
&
( [eo]
= (5 dE gc (E) e E-€cIkT) g=(Ec—E kT
&

(5)
and similarly, the number py of holes per unit
volume in the valence band at temperature T will
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be given by
pv(T)x [gi\;dE gv(E)e —(EV—E)/kT] e—(EF—Ev )KT

(6)
. where g (T) and gv (T) are respectively level
densitites in the conduction band and in the

valence band, which can be shown to be

g ()= o5 (2Me )" (E-60) )
4?2 .
and g (E)=?:z—2(3;%)3/2 (eu-E)2 (®)

Inserting Eq(7) into Eq(5), and Eq(8) into (6), we

have

ne (T)= (——27;1-12 )2 g (BT (9)
_and pv(-r):z(";_nl%‘;)s/z o (BT (10)

Therefore, we get the law of mass action

NePv =4 (2;.;2)3/2 (m*emth)alz e‘(sc'Sv)/kT
e g (D)

Eq (I 1) means that, at a given temperature T, it
suffices to know the density of one carrier type
to determine that of the other.

(i) For an intrinsic semiconductor

In the intrinsfc" case (in doped material),
conduction band electrons can only have come
from formally occupied valence band levels,
leaving holes behind them. Thus,
ne (T)=pv (T)=ni(T)
From Eq (I 1), we have

—o (X
nI(T)_z (Zn’ﬁz

Thus, it should be expected that, as the tempera-

)3/2(m*e m*h)3/4 e'(ES/ZKT)

(12)

ture is raised, the intrinsic carriers of a semi-
conductor will increase by exp (-Eg/2kT). This
temperature is usually very high since Eg=0.7
ev for Germanium. Also, if we set Eq(9) to be

equal to Eq(10), we obtain
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EF—_——IZ‘Eg'*‘_z‘kT In (m*h/m*e) (|3)

. I
This asserts that as T—=0K, Ep—>—2—Eg, and the

Fermi level of an intrinsic semiconductor is in
the middle of the forbidden gap.

(i) For an extrinsic (doped) semiconductor

When a Germanium crystal is doped with a
little Arsenic, we see that the dominant carriers
are electrons. Thus nc> >pv. This means that
this kind of semiconductor is n-type.

The properties of an extrinsic Ge semicon-
ductor are obviously determined by the impurity
Arsenic, especially at low temperature, since
very few electrons of Ge atoms are populating
the conduction band. At low temperature, the

number of electrons in the conduction band is

given by
Zm *kT —E /2kT
nc=Nd(—7;h—z—)“ e ¢ (18)
m*eeai
where Ea= | E; | = in Eq(I1), which is
2e?

the separation of the donor energy level from

the conduction band. Since Ea=0.01 ev, and kT

0.0l ev for T=120°K, we see that most of the

electrons will be in the conduction band at nee

120°K. So, in this situation, n=Na, the concen-
tration of Arsenic atoms, i.e. the number of elec-
trons becomes saturated in the conduction band
and these electrons behave like the free elec-
trons of a metal at low temperature. =
(3) Electrical conductivity o and resistivity p
We know that conduction in solid is due to
the motion of the charge carriers under the in-
fluecne of an applied E”-field. The drift velocity
of the carrier can be simply found to be propor-
tional to E, the field strength, according to the

equation Va = «E, where the proportionality x is
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called mobility of the carrier. If the carriers have
concentration n and charge e, the current den-
sity

j=di/dt=dq/(dtdA) =dl(edN)/dtdV=nev  (I5)
» where n=dN/dV, and va=dl/dt. By Ohm’s law,

j=6E’ where o is the conductivity, we have

j= oE=nevq (16)
Thus, 0= neu .

(i) For intrinsic semiconductor®®

We see that o should be written as
o(T)=elne pte +nnpn)=ene( we + un)
Since ne =n;, from Eq(12), we have
LI “E JokT

o(T)=2e( (m*em*,)*'* e
(/le o+ /lh)
Therefore,
3
logo(T)=— ;3}<¥5E%}-+Iog2e(ﬂeﬂ-ph)
(2:ﬁ2)3/2(m *e m#h)3/4

The resistivity o is defined as p=1/0. Thus,

L Z Electromagnet

X
Fig. 3 The experimental geometry for the Hall Effect.

we obtain log p(T)=—log o (T)

_ E¢  3logT k
- 2kT 2 'Og Ze(/le +/‘h)(27m2

2/3
)**(m?*

my )¥ (18)

Since logT varies very slowly, we see, from
Eq(18), that log(T) will be approximately to |/T.
This property can be found by plotting log p(T)
vs. (I/T). The straight line will have a slope of
Ee/2k and then Eg4 can be determined.

(ii) For Extrinsic semiconductor®

A simple calculation for an electron gas in

an applied E-field can find that o(T)=neu =
ne’

c . ik ('9)
Me

» Where ¢’ is a constant. At low temperature (the

extrinsic region), because the number n of the

electrons is almost constant, we see that the

resistivity p of an extrinsic semiconductor will

be proportional to T*2 Thus, we have

log p =% log T+c (20)
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Where c is a constant. Therefore, plotting log p
vs. log T will get a straight line of slope 3/2.
Il. Experimental Determination of Eg, n, and
exponent of power law®®
(1) Determination of n

From Eq(17), we see that the concentration
n of electrons is related with the current density
flowing through the semiconductor sample. We
also see, from Eq(19), that E4 can be determined
by measuring the resistivity p of the sample. How-
ever, n and Eg can be experimentally obtained
from Hall Effect measurement. Consider a Ger-
manium semiconductor sample, which is doped
with a little Arsenic, of length |, width w, and
thickness h. This sample is mounted in a uniform

magnetic field B in the y direction as shown in

Fig. 3. If a current with constant current density
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Thermocouple
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Fig. 4  Experimental Apparatus

L= x is flowing through the sample in the x

direction by application of a voltage Vr between

contacts 3 and 4, the Lorentz force F=-e vd X B

will deflect the conducting electron in the —z
direction (downward). But, the electrons can not
move very far in the —z direction before running
down against the side of the sample. As they

accumulate there, an electric field, called Hall
field Ey' builds up in the —z direction. At equilib-

rium, this field will balance the Lorentz force,
and the current will flow only in the x direction.
Since we originally set the direction of the drift

velocity of the electrons to be perpendicular to
the applied B-field, we see that, at equilibrium,

—evaB= —ekEn,
or EH=VdB (2|)
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From Eq(17), we have vd=nj—e. So, Ex=

i I
b _ (—B). The Hall voltage Vy is given by
ne hwne
Vu=hEu. Thus, we get
IB
H= (22)
wne

Hence, for fixed magnetic field B and fixed input
current I, the Hall voltage is proportional to 1/n,
or Vu will be proportional to T*/2 exp (E,/2kT)
from Eq(12). By Eq(22), we see that the sign of
Vi will give the information about the kind of
carriers, electrons or holes. Furthermore, if L,B,
and w are known, the carrier concentration can
be determined by the measurement of Vy.
(2) Determination of Eg

We know that the resistance R across the
contacts 3 and 4 in Fig. 3 can be expressed as
R=p £/A=p £ /hw, where p is the resistivity.

I
According to Ohm’s law, we have Vg =IR=I£,

(23)

Thus, Vk is proportional to p. Since p=p(T), a
function of temperature T, we see that Vr =Vg
(T), a function of temperature T, also. Using
Eq(19), we have

log Vr (T) =logp (T) +log (I £ /hw)

Ee
2kT

k
27h°

—-%Iog T-log (2e(te + n)(z—=)**(m*em*)¥*) + log (I—e).(24)
hw

Hence, if the current | is kept constant in the
experiment, we have log Vx (T) @ |/T. By plot-
ting log Vk(T) vs. (1/T), the slope of the straight
line will give the value of Eq. Or, from Eq(24),
log R(T)

k
27’

- E 3 si2(
=T 7 l08T-log (2e(ue + 1) (5=5)**(m*.

m*,) (“7“63 (25)

By plotting log R(T) vs. (1 /T), the value of E; can
be also determined by the slope of the straight
line.
(3) Determination of the exponent of power law
paT?

Since Ra p for fixed semiconductor crystal
dimension, we will see that log R=log p+c,,
where ci is a constant. Therefore, log R(T) can

be expressed as
log R(T) =%Iog T+c,

» Where c: is a constant. Plotting log R vs. log T
can obtain the exponent 3/2 of the power law

paT¥?,

EXPERIMENTAL PROCEDURE

The following steps were taken to perform in
this experiment.

I'. Connect the equipment as shown in Fig. 4.

2. Fill an insulated bottle with a mixture of ice
and water. Insert the reference end of the ther-
mocouple, which will be used to measure the
temperature of the semiconductor crystal sam-
ple used in this experiment, into the ice bath.
Keep the reference point at 0°C.

3. Turn on the connected meters shown in Fig.
4.

4. Adjust the constant current source flowing
through the sample at ImA. Then turn on the
magnetic field, which was controlled by a ”
ZENITH Z100, DATA SYSTEM*,

5. Rotate slowly the crystal until the Hall volt-
age showing on the voltmeter obtains the largest
value. (This step is to make sure that the Lor-
entz force acting on the electron has the maxi-
mum magnitude of ev4B.)

6. Heat the crystal to a temperature of about
100°C (373°K) . It is usually necessary to use a
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heating coil to reach this point. As this point is
reached , turn off the heating apparatus and
allow the crystal to cool down to about 140°K by
filling the dewar, which mounts the crystal in its
cavity, with liquid nitrogen.

7. When the temperature of the sample was
decreased, at every 5°C (5°K) interval starting at
373°K, record (a) the crystal temperature from
the thermocouple voltage using the conversion
chart; (b) the voltage Ve across the internal
resistance R of the crystal; (c) the Hall voltage

Vi when g-field is absent; and (d) the Hall volt-
age Vu2 when é-field is applied on the crystal.

8. From the data recorded in step 7, plot (a)
Resistance R vs. Temperature T; (b) Hall Voltage
Vu vs. Temperature T, where Vi =Vuz-Vi; (c)
Log R vs. Log T; and (d) Log R vs. 1/T.

CONCLUSION AND DISCUSSION

We see, from the figure of log R vs. I/T
(see Fig. 9) that the extrinsic region for our Ger-
manium semiconductor is the range for T<293°
K, where conduction will be mainly due to the
extra electrons of the Arsenic atoms. The region
for T> 293°K is the intrinsic region where con-
duction is due to the electrons of the Germanium
atoms which are transferred thermally from the
valence band to the conduction band. In the
intrinsic region, we see that Log R is indeed
proportional to 1 /T with a positive slope as
Eq(25) expected. Calculation of this slope leads
to the gap energy Eg of the Germanium semicon-
ductor crystal.

B¢ _ A(log R)
2k A0/T)

4034.615(K)
Taking the Boltzmann constant k= 1.381 x 1072

4.4588-4.1441
0.002833-0.002755
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i/K, we obtain Eg=0.696 ev, which is close to
the previous measured value 0.66 ev.® From
the figure of Log Rvs. Log T (see Fig. 8), we see
that, in the extrinsic region, Log R is propor-
tional to Log T with a positve slope as Eq(20)
expected. For T<293K, the slope of the
straight line is given by

A (Log R) _ 5.500-4.673
A(Log T) 5.450-5.000

=1.84

which is very close to %= |.5. The difference is

mainly due to the simple derivation for Eq(19).
Thus, we have the power law: p(T)aT"®, or
o(T) aT™ 18

By the figure of Hall voltage Vu(T) vs. Tem-
perature T (see Fig. 7), we find that the magni-
tude of Vu(T) decreases as T increases. This
phenomenon can be explained by the property
that Vu(T) is proportional to T~*?exp (Eg/2KT)
for fixed magnetic field B and fixed input cur-
rent. Since Vi =0 as B=0 (the magnetic field is
turned off), the measuring of Vi on the voltme-
ter should always be properly zeroed when the

magnetic field is off. But, the actual measure-
ments showed that Vy #0 as ;3=0. The mainly

probable reason might be due to the fact that
the contacts of our Germanium semiconductor
crystal sample are not quite opposite to each
other. This results in a potential gradient
between the contacts due to the input current.”’

Hence, we should take the values of Vi as Vu=
Vi (é on)~VH(é off). The peaks appearing in Fig.

7 at temperatures T=228K, 178K, and 143°K
are due to the unstability of the Hall voltage Vu
and the temperature of the Germanium semicon-
ductor crystal sample. They happened as we
poured the liquid nitrogen to cool it down below
0°C (273°K). But, we did not do further investiga-
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Table | Hall voltage and resistance across the Germanium semiconductor doped with impurity Arse-
nic used in this experiment.

temp fieldon field of V\.dr Hall vol Resistan Log R Log T /T

373.0 -1.910 -1.510 -0.04680 -0.4000 46.85 3.847 5.922 0.002681
368.0 -2.210 -1.730 -0.05430 -0.4800 54.35 3.996 5.908 0.002717
363.0 -2.530 -1.930 -0.06300 -0.6000 63.06 4.144 5.894 0.002755
358.0 -2.870 -2.180 -0.07360 -0.6900 73.67 4.300 5.881 0.002793
353.0 -3.240 -2.450 -0.08630 -0.7900 86.39 4.459 5.866 0.002833
348.0 -3.980 -2.830 -0.1017 -1.150 101.8 4.623 5.852 0.002874
343.0 -4.450 -3.200 -0.1176 -1.250 117.7 4.768 5.838 0.002915
338.0 -4.930 -3.110 -0.1374 -1.820 137.5 4.924 5.823 0.002959
333.0 -5.970 -3.810 -.1592 -2.160 159.4 5.071 5.808 0.003003
328.0 -6.960 -4.280 -0.1830 -2.680 183.2 5.210 5.793 0.003049
323.0 -8.090 -4.760 -0.2090 -3.330 209.2 5.343 5.778 0.003096
318.0 -9.570 -5.300 -0.2344 -4.270 234.6 5.458 5.762 0.003145
313.0 -10.87 -5.900 -0.2584 -4.970 258.7 5.556 5.746 0.003195
308.0 -12.22 -6.380 -0.2797 -5.840 280.0 5.635 5.730 0.003247
303.0 -13.45 -6.620 -0.2934 -6.830 293.7 5.683 5714 0.003300
298.0 -14.55 -7.240 -0.3025 -7.310 302.8 5.713 5.697 0.003356
293.0 -15.47 -7.350 -0.3074 -8.120 307.7 5.729 5.680 0.003413
288.0 -15.75 -7.390 -0.3080 -8.360 308.3 5.731 5.663 0.003472
283.0 -16.11 -7.410 -0.3064 -8.700 306.7 5.726 5.645 0.003534
278.0 -16.06 -7.020 -0.3030 -9.040 303.3 5.715 5.628 0.003597
273.0 -15.39 -6.290 -0.2986 -9.100 298.9 5.700 5.609 0.003663
268.0 -14.80 -5.160 -0.2935 -9.640 293.8 5.683 5.591 0.003731
263.0 -14.02 -4.000 -0.2882 -10.02 288.5 5.665 5.572 0.003802
258.0 -12.98 -2.770 -0.2824 -10.21 282.7 5.664 5.553 0.003876
253.0 -11.99 -1.370 -0.2764 -10.62 276.7 5.623 5.533 0.003953
248.0 -10.69 0.1500 -0.2702 -10.84 270 5 5.600 55513 0.004032
243.0 -10.30 0.8500 -0.2637 =115 264.0 5.576 5.493 0.004115
238.0 -99.550 |.660 -0.2567 =11.21 257.0 5.549 5.472 0.004303
233.0 -9.340 2.290 -0.2493 -11.63 249.5 5.520 5.45] 0.004292
228.0 -3.450 0.8300 -0.2420 -4.280 242.2 5.490 5.429 0.004386
223.0 -6.610 0.8900 -0.2344 -7.500 234.6 5.458 5.407 0.004484
218.0 -9.900 |.600 -0.2264 -11.50 226.6 5.423 5.384 0.004587
213.0 -10.55 |.550 -0.2183 -12.10 218.5 5.387 5.361 0.004695
208.0 =11.79 1.230 -0.2102 =113%02 210.4 5.349 5.338 0.004808
203.0 -12.59 0.7500 -0.2023 -13.34 202.5 5.311 5.313 0.004926
198.0 -13.26 0.3800 -0.1940 -13.64 194.2 5.269 5.288 0.005051
193.0 -13.69 0.1300 -0.1857 -13.82 185.9 5.225 5.263 0.005181
188.0 -13.96 0.05000 -0.1776 -14.01 177.8 5.181 5.236 0.005319
183.0 -14.05 0.1600 -0.1689 -14.21 169. 1 5.130 5.209 0.005464
178.0 -13.37 0.1700 -0.1584 =13.54 158.6 5.066 5.182 0.005618
173.0 -13.69 1.230 -0.1516 -14.92 151.8 5.022 5.153 0.005780
168.0 -12.95 2.040 -0.1420 -14.99 142.1 4.957 5.124 0.005952
163.0 -12.34 3.300 -0.1337 -15.764 133.8 4.897 5.094 0.006135
158.0 -11.16 4.808 -0.1247 -15.24 124.8 4.827 5.063 0.006329
153.0 -9.700 5.440 -0.1158 -15.14 115.9 4.753 5.030 0.006536
148.0 -8.250 6.770 -0.1071 =15.02 107.2 4.675 4.997 0.006757
143.0 -6.230 8.060 -0.09910 -14.29 99.20 4.597 4.963 0.006993
138.0 -5.770 9.470 -0.09070 -14.24 9.0.79 4.509 4.927 0.007246
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Fig. 8  The logrithm of the resistance of the sam-
ple as a function of the logrithm of the
temperatures for transition from extrinsic
region to intrinsic region. The power law
can be also determined from this figure.

tions in this paper. In addition, the concentration
n for each corresponding value of Vu was not
computed here although we have the informa-
tion of w=0.03 mm, [=-0.999 mA, and e= 1.6 X
107" coul. However, from Fig. 7, we see that Vy
(T) approaches a constant value as T is below
I70°K. This means that, at low temperature, n
will have a constant value as the theory expect-
ed.
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